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Abstract. We investigate numerically the diffusion and conduction properties of a two- 
dimensional random lattice hopping model. Our results are compared with a recent field 
theoretical renormalisation group approach, showing that two is the upper critical 
dimension for such models. The predicted scaling law with a universal logarithmic 
behaviour of the velocity is clearly observed. The finiteness of the diffusion constant as 
well as its regular dependence versus the strength of randomness are evenly in good 
agreement with analytical results. We also determine the frequency dependence of the AC 

conductivity tensor. 

1. Introduction 

Diffusion and conduction properties of random media have been the subject of much 
recent interest. Disordered conductors are usually represented by a lattice hopping 
model (see Alexander et a1 1981 and references therein). The general model with 
non-symmetric hopping rates exhibits a very rich structure in one dimension (Kesten 
et a1 1975, Solomon 1975, Sinai’ 1982, Derrida and Pomeau 1982, Bernasconi and 
Schneider 1983, Derrida 1983). Randomness induces two remarkable effects in one- 
dimensional diffusion: there exists generally a whole ‘critical phase’ where the velocity 
vanishes, and where some critical exponents vary continuously with the strength of 
disorder; moreover different physical quantities are, in general, singular at different 
points. 

The hopping model in dimension d higher than one has been studied through a 
weak disorder expansion (Derrida and Luck 1983), and through a perturbative renor- 
malisation group (RG) analysis (Luck 1983). These papers are referred to as (I) and 
(11) in the following. The upper critical dimensionality is d,  = 2. For d > 2, any weak 
disorder is irrelevant; a classical diffusive behaviour is observed. For d < 2, a small 
randomness in the hopping rates changes the long-time behaviour of certain physical 
quantities, which obey universal scaling laws with non-trivial critical exponents. Very 
similar results have been obtained in the ‘true self-avoiding walk problem’ (Amit e t h l  
1983, Obukhov and Peliti 1983, Peliti 1983). 

In the two-dimensional case, the perturbative RG approach (11) predicts universal 
logarithmic corrections to the classical diffusion and conduction laws. These logarithms 
are characteristic of whatever model at its upper critical dimension. 

The aim of the present paper is to study a particular example of a 213 random lattice 
hopping model, by solving exactly the steady-state equations on finite lattices, as 
explained in (I). We shall consider successively the velocity induced by a constant 
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exterior field, the diffusion tensor, and the AC (frequency dependent) conductivity 
tensor. We discuss for each quantity how the present numerical results compare with 
the analytical predictions of the weak disorder expansion, and the renormalisation 
group analysis. 

2. The model 

We shall follow throughout this paper the notation of (I). The hopping model is defined 
by a collection of hopping rates { W,,,}: Wy,x d t  is the probability of jumping from site 
x to site y during the infinitesimal time dt. The W,,, are distributed according to a 
given translationally invariant measure. 

Our particular choice of hopping rates is as follows: every site of the infinite square 
lattice is of type A with probability p A  = p,  and of type B with probability pB = 1 - p .  
The attribution of a type label (A or B) to a given site is done independently for each 
site. 

and 2 denote the unit vectors in both directions on the lattice. The W,,x read Let 

where the bias 6 lies between 0 and 1. Figure 1 shows one site of each type, where 
the magnitude of the associated rates is symbolised by arrows. 

Figure 1. One site of each type (A and B) present in our model. The length of the arrows 
represents the magnitude of the hopping rates to nearest neighbours in the corresponding 
direction. 

This problem is non-symmetric, because W,,, and W , ,  depend respectively on the 
types of sites y and x, which are independent. The W, ,  have been chosen such that 
Z, W , ,  = 1 for all x. This convenient normalisation sets the microscopic time scale of 
the model equal to unity. 

We have chosen the following numerical procedure. 
(a) Firstly manufacture a finite (square N x N )  sample according to the preceding 

rules, with periodic boundary conditions. 
(b) Secondly, determine the physical quantities through a numerical resolution of 

the steady-state equations derived in (I). The most efficient way to deal with these N 2  
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or 2 N 2  coupled linear equations seems to be the standard relaxation method, using 
as a starting point the translationally invariant solution of the steady state in a pure 
medium. We shall describe explicitly this relaxation method in the case of the velocity. 
We always get a reasonable accuracy (-1%) on the physical quantities after 300 to 
600 steps. 

(c) Thirdly, average the physical quantities over M distinct samples. 
Although we do not know of any a priori optimal choice of M and N (at fixed 

total computer time), we have found an empirical compromise between statistical errors 
and relaxation times for lattice sizes around N = 50 to 100. Reasonable error bars are 
then obtained for M = 5 to 50. 

The statistical errors cannot be reduced by an appreciable amount without using 
roughly 100 times more computer time; that seems to be an unreasonable enterprise, 
since the present work has used roughly one hour CP time on a CRAY. 

3. The velocity 

According to (I), the components V, of the velocity are given by 

V, = (Y ,  - x,) Wy,xQx 
x* Y 

where Qx is the solution of 

satisfying the normalisation condition 

c Q x = l .  
X 

(4) 

We have solved equation (3) by a standard relaxation method, starting from the 
solution corresponding to the pure medium: 

Qy) = N-2 

updating the Qx according to the formula 

@ + I ) =  c wx,,,Ql"' 
Y 

(since Z, Wy,x = 1 for all x) and normalising the solution according to (4) after each 
sweep of the whole lattice. The method gives a reasonable convergence of the velocity 
after several hundreds of sweeps ( ~ 6 0 0  sweeps). 

In our model, both components V, of the velocity are equal, on whatever finite 
sample: 

( 5 )  v, = v, = v. 
The weak disorder expansion up to first order predicts 

V =  Vo[1-(4/.rr)gInA/Vo+ ...I (6 )  

where A is some cut-off of order unity, and where the 'bare velocity' Vo and the 
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b. 

'coupling constant' g are simply related to the parameters b and p defining our model: 

. * .  . .  
,".a 

The domains of variation of these parameters read: 

O S P S l  O s b s l  - 4 6  v 0 - 2  < L  o s g s ; .  (9) 
This notation is consistent with that of (I) and (TI). 

group approach (11) predicts a universal scaling behaviour: 
As Vo goes to zero, the perturbative series (6) becomes singular. The renormalisation 

v/ vo = f (XI (10) 

f(x> - cx asx+O (1 1) 

x = ( g  In(l/ v0))-' 
with 

for Vac< A and small g. 
In other words, a static field Vo induces a current V which vanishes more rapidly 

than Vo by one power of In Vo. 
We have computed V for different values of g, and for Vo up to 0.05 << 1. Figure 

2 shows a plot of V /  V, as a function of ( g  ln(l/ V,))-'. Different symbols indicate 
different values of b. Their meaning will be kept throughout all the figures. A good 
agreement with (1 OH 1 1) is observed, namely 

(a) the existence of a scaling function f is clear 
(b) the asymptotic behaviours off:  

f(x) - 1 - (4/ ..XI (x + 03) (12) 

f(x) - cx (13) 
coincide with (6) and (lOH11) respectively. This value of C is empirically determined 
by drawing a straight line on figure 2. 

(x + 0) with C - 0.21 

/ 
/ #  

/ 

1 C  I 

4' 

I> 
0 a1 0.2 a3 04 05 

Y 

Figure 2. The scaling function of the velocity. The 
broken curve at large values of x is the first-order 
weak coupling expansion. The broken line at small 
values of x gives an estimate of the slope C (see 
equations (11)-(13)). The values of b are denoted 
by: 0,  0.40; V, 0.50; A, 0.60; 0, 0.70; V, 0.80; 
A, 0.90; 0, 0.95; W, 1. 

Figure 3. The parallel difision constant D,, as a 
function of Vo for different values of b (A, 0.60; V, 
0.80; W, 1). Note the existence of a finite limit Do 
as V,+O. 
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This scaling analysis is only valid for g+O, while some data correspond to g = &  
On the other hand, the best choice for the cut-off A is certainly not the value A = 1 
we have adopted. 

We think that these two small systematic deviations from scaling are quite negligible 
compared with the statistical errors on our data. 

Likewise, the systematic finite-size effects are negligible as far as the velocity is 
concemed: we have not noticed any systematic deviation by comparing sizes N = 20 
to 200. A compromise between statistical errors and relaxation times led us to use 
mostly 50 x 50 and 100 x 100 lattices. 

We shall examine systematically the finite-size effects for other quantities in the 
following. 

4. The diffusion tensor 

The component D,,, of the diffusion tensor is given by (I): 

D”’=i 1 [(y’ - X ” ) T ;  + ( y ”  - x ” ) T ~ ] W ~ , ~  +; [(y’ - X ” ) ( ~ ” - X ” ) W , , ~ Q ~ ]  
X.Y X > Y  

where Qx has already been defined and used to compute V,, and where Tc is the 
solution of 

In the present case, only one component of Dpy is non-trivial. 
Let E, be the unit vector parallel to V,: 

We have then, on an arbitrary finite sample, 

Dpy = (8,” - &,&”)Dl + &,E”DI (  

and moreover 

(18) D =.! I 4. 

Only Dl, deserves some interest. Figure 3 shows a plot of Dil as a function of V, 

For a given value of b, V, reaches its maximal value for p + 1 : 
for three different values of b: b = 0.6, 0.8 and 1. 

Vo max = ib* (19) 

Dll= D, = $ at V, = V, (20) 

Since this value corresponds to a pure A phase, it is very easy to check that we have 

The RG analysis predicts a very weak singularity in Dll( V,) as V, + 0: 

(21) Dll - Do( 1 - constant/ln(A/ V,)) 

in an exponentially small critical region. 
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Although we cannot see this singularity in our numerical data, we have, nevertheless, 

Let us now consider the variations of Do with g in some more detail. This quantity 
this interesting result: Do = Dll( Vo = 0) is finite. 

is expected to be a regular function of g. The weak coupling expansion predicts 

Do=&(2/.rr)g + 0 ( g 2 ) .  (22) 
We take into account the eventual systematic finite-size effects in the following 

way. Do is computed for different lattice sizes, and the data are extrapolated to N = 00. 

Figure 4 illustrates the convergence of this method. Even at large disorder ( b  = 0.9) 
and for small lattices ( N  = 10 to 40), these finite-size effects are small and regular in 1/ N. 

The straight line corresponds to a least-squares fit. The size of the error bars is 
J V - ~ ” ,  where X = M N 2  is the total number of sites used in the computation of a point. 
The statistical errors are clearly less than that crude estimate. 

Figure 5 shows the variations of Do (extrapolated as we have just explained) as a 
function of g. The broken line represents the weak-disorder expansion (22). 

The agreement between analytical and numerical results is again very good. Let 
us recall that even the existence and finiteness of Do at g f 0 is a recent non-trivial 
result (11). 

In the limiting case b = 1 (g =a), where every W is either 0 or 1 (that is therefore 
a very wildly disordered medium), Do reaches a finite limit: 

Do lim - 0.053 (23) 
which is roughly five times smaller than in the absence of randomness. 

0 2L 

Olt 

--.---U 
0 l/Lo 1/25 1/20 1/15 1/12 1no 

1/N 

L 
0 01 0.2 

9 

Figure4. An example of the extrapolation of the 
finite lattice data to the thermodynamical limit for 
the quantity Do at b = 0.9. Systematic finite-size 
effects are small. 

Figure 5. The extrapolated Do= Dii (Vo=O)  as a 
function of g. The broken curve is the result of the 
weak coupling expansion up to first order. 

5. The AC conductivity tensor 

The components u,,(w) of the AC conductivity tensor at frequency f = w / 2 ~  are given 

(24) 
by (1): 

u””(w) = c (Y’ - XP) W,,AY” - XY)QX + Wo)l 
&Y 
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where Rl(w) is the solution of 

Let us restrict ourselves in this section to the case Vo = 0 (p = f). The continuous 
theory (11) predicts indeed that Vo and are two very analogous relevant variables, 
at least in d = 2 (and 2 - E ) .  We have not been interested in the eventual crossouer 
effects occurring when both V ,  # 0 and w # 0 remove the system from criticality. 

In our case, the conductivity tensor takes the following form: 

on a finite sample. But the two functions Z , ( w )  and Z2(w) ,  which generally take 
different values on a given sample, become identical in the thermodynamical limit 
( N +  CO), or equivalently if they are averaged over a large number M of finite samples. 
We have therefore 

Notice that Z(o) is generally complex. Z is identically zero in the non-random 
case (g = 0), where U,” is independent of w. The symmetry of u,,(w) is particular to 
our model, and b7 no means a general property of hopping models (see I). 

We have determined numerically Z ( w )  for different values of b and over the whole 
range 0 < w < CO. On each finite sample, we get two results Z , ( w )  and Z 2 ( w )  which are 
always very close, in agreement with a naive formula like 

( I Z W  -Z2(412)1’2 - K ( w ) / N  (28) 

following directly from the central limit theorem. 
For small w, the effective range of equations (24H25) diverges as (11): 

6 -  l / A .  (29) 

We have, therefore, to analyse more carefully the data corresponding to zero frequency, 
making use of the extrapolation method described in P 4 in the case of Do. Figure 6 
illustrates an example of convergence of the quantity 2(0) as the lattice size N is varied. 

The statistics on each point is roughly the same as in the case of Do. The straight 
line is again a least-squares fit. 

Figure 7 shows the variations of Z ( w )  in the complex plane for four different values 
of b. As w grows from zero to infinity, X(w)  varies from a real negative value X(0) < 0 
to zero. Its imaginary part is maximal for w - 1 (in our reduced units). The point 
w = 1 is indicated by an arrow for each value of b. 

The renormalisation group (11) predicts that u,,(w) develops as w + 0 the same 
type of singularity as D,,(V,) as Vo+O. This very weak logarithmic correction is 
unobservable in our data. These show nevertheless that randomness induces a non- 
trivial w-dependence of the condcctivity tensor, which is frequency independent in a 
pure diffusive medium. 
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010' 
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Figure 6. The same as figure 4, for the zero frequency 
conductivity at b = 0.40. Finite-size effects are again 
very small. 

Figure 7. Variations of the quantity Z ( w )  in the com- 
plex plane for 0 < w <CO and for different values of 
b. (0,0.40; A, 0.60; V, 0.80; ., I). I ( w )  starts from 
a real negative value at o = 0 and goes to 0 at large 
w. The points corresponding to w = I are indicated 
by arrows. 

6. Conclusion 

We have seen how the random hopping model on a finite lattice is easily numerically 
tractable through the steady-state equations derived in (I). The systematic finite-size 
effects are regular enough to be easily taken into account. The statistical errors are 
small enough to allow us to extract the quantities of interest from the data. These 
errors cannot be considerably reduced. 

The present results are in very good agreement with the predictions of the weak 
disorder expansion, and of the renormalisation group analysis. In particular, the scaling 
function of the velocity and its universal logarithmic behaviour, and the finiteness of 
the diffusion constant at vanishing velocity, are encouraging confirmations of the 
quoted recent analytical results. 
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